Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions

نویسندگان

  • Chohong Min
  • Frédéric Gibou
چکیده

We present a robust second-order accurate method for discretizing the multidimensional Heaviside and the Dirac delta functions on irregular domains. The method is robust in the following ways: (1) Integrations of source terms on a co-dimension one surface are independent of the underlying grid and therefore stable under perturbations of the domain’s boundary; (2) The method depends only on the function value of a level function, not on its derivatives. We present the discretizations in tabulated form to make their implementations straightforward. We present numerical results in two and three spatial dimensions to demonstrate the secondorder accuracy in the L-norm in the case of the solution of PDEs with singular source terms. In the case of evaluating the contribution of singular source terms on interfaces, the method is also second-order accurate in the L∞-norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order numerical methods to two dimensional Heaviside function integrals

In this paper we design and analyze a class of high order numerical methods to two dimensional Heaviside function integrals. Inspired by our high order numerical methods to two dimensional delta function integrals [19], the methods comprise approximating the mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimensional Heaviside function integral can be rewrit...

متن کامل

Decomposition of multivariate function using the Heaviside step function

Whereas the Dirac delta function introduced by P. A. M. Dirac in 1930 to develop his theory of quantum mechanics has been well studied, a not famous formula related to the delta function using the Heaviside step function in a single-variable form, also given by Dirac, has been poorly studied. Following Dirac's method, we demonstrate the decomposition of a multivariate function into a sum of int...

متن کامل

Finite Element Quadrature of Regularized Discontinuous and Singular Level Set Functions in 3D Problems

Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance wit...

متن کامل

A New Two Dimensional Model for Pollutant Transport in Ajichai River

Accurate prediction of pollution control and environmental protection need a good understanding of pollutant dynamics. Numerical model techniques are important apparatus in this research area. So a 2500 line FORTRAN 95 version code was conducted in which using approximate Riemann solver, couples the shallow water and pollution transport agents in two dimensions by the aid of unstructured meshes...

متن کامل

Finite difference methods for approximating Heaviside functions

We present a finite difference method for discretizing a Heaviside function H(u(~x)), where u is a level set function u : Rn 7→ R that is positive on a bounded region Ω ⊂ R. There are two variants of our algorithm, both of which are adapted from finite difference methods that we proposed for discretizing delta functions in [13–15]. We consider our approximate Heaviside functions as they are use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008